

SSSC Meeting July 23, 2001

Dominic Benford, Instrument Scientist Harvey Moseley, PI

All the Answers, Up Front

- Can SAFIRE be ready at first light?
 - Yes! SAFIRE will be ready and ground-tested at the CSO by SOFIA first light.
- What compelling science can SAFIRE deliver with first light performance?
 - SAFIRE will deliver full science capability at first light:
 - Powering of Ultraluminous Infrared Galaxies
 - ISM cooling from CII (158μm) & other FIR fine structure lines
 - Evolution of Matter in Universe
 - Diagnostics of Active Galactic Nuclei
 - Star formation in the Galaxy and out to high redshifts

OFIA

How Can SAFIRE be Ready by 2004?

- Aggressive demonstration of technology building blocks as we go; risks retired early
- Reliance on GSFC resources, extensive leveraging of other projects (FIBRE, SPIFI)
- Funding continued at original request w/gap funding; SAFIRE's cost-at-complete has not grown

					2001	2002	2003	2004	2005
ID	Task Name	Duration	Start	Finish	Qtr 2 Qtr 3 Qtr 4	Qtr 1 Qtr 2 Qtr 3 Qtr 4	Qtr 1 Qtr 2 Qtr 3 Qtr 4	Qtr 1 Qtr 2 Qtr 3 Qtr 4	Qtr 1 Qtr 2 Qtr
1	SAFIRE (Moseley, NASA/GSFC)	1025d	5/28/01	4/29/05	-				
2	SAFIRE Prototype at CSO (FIBRE Run 1	6d	5/28/01	6/4/01	0				
3	SAFIRE Prototype at CSO (FIBRE Run 2	30d	1/1/02	2/11/02					
4	SAFIRE Prototype Array (SPIFI) Fab	120d	10/1/01	3/15/02					
5	Lab tests of SAFIRE Cryostat	30d	10/1/01	11/9/01					
6	Cryo tests of SAFIRE Mechanisms	100d	11/12/01	3/29/02					
7	Prototype array test in cryostat	100d	4/1/02	8/16/02		*			
8	PADR Prep	60d	3/18/02	6/7/02					
9	SAFIRE PADR	1d	6/10/02	6/10/02		6/10			
10	CADR Prep	120d	6/11/02	11/25/02		<u> </u>			
11	SAFIRE CADR	1d	11/26/02	11/26/02		•	11/26		
12	Instrument final fab	180d	11/27/02	8/5/03		**			
13	SAFIRE Instrument I&T	120d	8/6/03	1/20/04				: ■n	
14	SAFIRE Airworthiness deadlines	60d	11/27/02	2/18/03		<u></u>			
15	SAFIRE ground test at CSO	30d	1/21/04	3/2/04				L	
16	SAFIRE Flight Prep	150d	3/3/04	9/28/04				<u> </u>	
17	Deliver SAFIRE to SSMOC	15d	9/29/04	10/19/04				*	
18	ORR for SAFIRE	2d	10/20/04	10/21/04				10.	20
19	SAFIRE ground test at SSMOC	15d	10/22/04	11/11/04					
20	SAFIRE First Light	1d	11/12/04	11/12/04				—	1/12
21	SAFIRE Certification	120d	11/15/04	4/29/05				<u></u>	

A NASA Origins Mission

SAFIRE Prototype FIBRE

In order to mitigate technology risks, the SAFIRE team has developed a prototype instrument called FIBRE (Fabry-Perot Interferometer Bolometer Research Experiment).

FIBRE is a ground-based spectrometer designed to demonstrate the key technologies for SAFIRE: superconducting transition edge sensor (TES) bolometers, SQUID multiplexed amplifiers, high speed data acquisition hardware, and a cryogenic Fabry-Perot.

FIBRE achieved first light at the Caltech Submillimeter Observatory on June 2, 2001.

FIBRE on the CSO

Spectrum of LO source

Detection of the Moon

A NASA Origins Mission

Developed and operated for NASA by USRA

SSSC Meeting - July 23, 2001

SAFIRE Parts

Fabry-Perots

Cryostat

ADR (salt pill)

Fabry-Perot control board SSSC Meeting - July 23, 2001

Part of Bolometer Readout Electronics

Sean's Status as of May 2001

SAFIRE Development Elements

Subsystem	В	Cost	Status	Risk	Mitigation
Cryostat					
ADR electronics					
TES bolometers					Proto-type
TES electronics					Proto-type
Optics design (frozen)					
Spectrometer optics/mechanics					
Software (operations)					
Software (data reduction)					CSO Obs.

With the successful deployment of the SAFIRE prototype to the CSO:

- TES bolometers with SQUID multiplexer readouts have been validated
- End-to-end testing (including software) has been performed.

Stratospheric Observatory for Infrared Astronomy

)FIA

SOFIA Science Missions

Circumstellar Disks FORCAST

Galactic Center FORCAST, SAFIRE, HAWC, AIRES

Powering of ULIRGs SAFIRE, FIFI-LS, HAWC, AIRES

Extragalactic Star Formation SAFIRE, FIFI-LS, HAWC, AIRES

Transits of Extrasolar Planets HOPI

Planets (e.g., Gas Giants, Titan, Pluto/Charon) HOPI, SAFIRE

Deuterated Hydrogen GREAT

CII cooling of the ISM GREAT, **SAFIRE**, FIFI-LS, CASIMIR

Evolution of Matter in the Early Universe HAWC, **SAFIRE**, AIRES

Active Galactic Nuclei HAWC, SAFIRE, AIRES

Spectroscopy of protostars CASIMIR, GREAT, SAFIRE

ISM Chemistry CASIMIR, GREAT

Infall/Outflow around YSOs AIRES, CASIMIR, GREAT, FIFI-LS

SNR Impact on Molecular Clouds AIRES, CASIMIR, GREAT, FIFI-LS

Planet Formation EXES

Water vapor in molecular clouds EXES, CASIMIR, GREAT

A NASA Origins Mission SAFIRE will significantly impact studies in half of SOFIA's key areas!

SAFIRE: Far-IR Imaging on SOFIA

SAFIRE High Priority Science Goals:

- Powrering of Ultraluminous Infrared Galaxies
- ISM cooling traced by FIR fine structure lines
- Evolution of Matter in Universe
- Diagnostics of Active Galactic Nuclei
- Star formation in the Galaxy
- Star formation out to high redshifts

M82 channel map simulation as seen by SAFIRE

(D. Benford)

SAFIRE's unique capabilities enable these science goals

- Detecting highly redshifted CII (158µm) from ULIRGs such as Arp220 or Mrk231
- Measuring line emission from galaxies at λ >100µm
- Imaging at submillimeter wavelengths; imaging spectroscopy (e.g., Galactic center)

SAFIRE fills a unique, crucial role for SOFIA:

- Far-IR wavelengths (145μm–655μm) (no SIRTF equivalent)
- Moderate velocity resolution (150km/s) (no SIRTF equivalent)

A NASA Origins Mission

Astronomy

Observatory for Infrared

Stratospheric

Developed and operated for NASA by USRA

Astronomy

Observatory for Infrared

Stratospheric

SAFIRE fills a unique, crucial role for **SOFIA**:

Only SOFIA instrument with imaging capability at $\lambda > 250 \mu m$

)FI/

Far-IR Lines as Science Tools

Many fine-structure and molecular-transition lines serve as probes of the physical properties of the ISM of the Milky Way and other galaxies:

- [OI], [SiII] lines probe the physical conditions of gas in PDRs.
- [NIII], [SIII], and [OIII] line pairs are excellent probes of HII region densities.
- [NII] lines trace the warm ionized medium.
- [CII] line traces PDRs, atomic clouds, and warm ionized medium.
- [NII]/[NIII], [SIII]/[OIII], [NeIII]/[OIV]/[NeV] ratios give the effective temperature of stellar or AGN UV radiation fields.
- [SI], [SiI], [SiII] and [FeI] lines indicate the presence of dissociative J-shocks.
- High-J CO rotational lines trace shocked gas found in warm dense gas of PDRs.
- OH lines trace shocked gas in cool dense gas.
- H₂ rotational lines probe the mass of warm molecular clouds.
- OH, CH, and NH₃ together constrain molecular cloud chemistry.
- [CI] traces star formation, atomic clouds.

A NASA Origins Mission

OFIA

Redshifted Fine-Structure Line Emissions

• The brightest emission lines from star forming galaxies are the fine-structure lines of common species:

[CII] 158 μm , [OI] 63 and 145 μm , [NII] 122 and 205 μm , [OIII] 52 and 88 μm

• Dominate the cooling of several phases of the ISM, comprising much of the mass:

ELD HII regions, atomic clouds, PDRs

- Probes of: ISRF (hardness and intensity), ISM density, mass, metallicity
- The brightest of these lines is the [CII] line which typically accounts for ~ 0.1 to 1% of the far-IR luminosity of star forming Galaxies.

The [CII] Line and Star Formation in the Early Universe -- I

- Far-IR continuum is a diagnostic of total luminosity for dusty galaxies
- Strong [CII] is associated with star formation
 - Can survey [CII] in the distant Universe using SAFIRE in the critical redshift range between 1 and 3. It is here that the greatest change star formation per unit in co-moving volume occurs.
 - What powers the SCUBA galaxies?

How strong are starbursts in the early Universe?

)FIA

The [CII] "Deficit" in Warm Dust Galaxies - I

Malhotra et al. 2001

- There is a tendency for higher luminosity sources to have a smaller [CII] line to far-IR continuum ratio.
- This change in line ratio is the physics --- to first order, the ratio reflects the strength of the ambient interstellar radiation field, G_o.
 - SAFIRE can trace this line in ULIRGs out to z>0.3

ISO Observations of IR Bright Galaxies

- Far-IR fine-structure lines prominent for most IR bright galaxies
 - trace radiation fields
 - trace gas properties
 - trace abundances
 - dominate gas cooling
- F-S lines weak in Arp 220
 - molecules very strong!
 - [CII] 10 times weaker than expected

Notice that Arp 299 is bright Also a ULIRG!

Less than half of the ULIRG have severe (> 2 X) [CII] deficits

A NASA Origins Mission

Observatory for Infrared Astronomy

Stratospheric

Developed and operated for NASA by USRA

SSSC Meeting - July 23, 2001

SAFIRE Imaging of Galaxies: M83

FIFI/KAO [CII] Map: 55" Beam (Geis et al. in prep.)

SAFIRE/SOFIA 16" [CII] Beam

A NASA Origins Mission

Astronomy

Observatory for Infrared

Stratospheric

SAFIRE Will Easily Resolve the [CII] Line Emission from Spiral Arms \Leftrightarrow Star Formation in Spiral Galaxies

OFIA

SAFIRE Observations of the Galactic Center - I

SAFIRE can map the entire thermal and nonthermal arches region in a wide variety of spectral lines

- Arches: Where are the stars?
 - -Mapping in [CII], [OI], [NII], and mid-J CO lines locates sources of excitation
- Sickle: Shocks
 - -Mid to high J CO, and HCN excited near shock
- Circumnuclear ring: what is the mass & size?
 - [CI] line ratios trace gas column density and temperature, but are insensitive to gas density
- Circumnuclear ring: Where is the gas reservoir that replenishes the ring?
 - [CII] & [OI] 145 μm lines trace gas excitation & kinematics at high resolution in large region
- Circumnuclear ring: What excites molecular line emission from the ring: radiation or shocks?
 - -Mid and high-J CO line ratios, OH 163 μm line can be used to determine

A NASA Origins Mission

SAFIRE's Extended Capabilities - I

- Wavelength range can be increased to include λ≥100μm, permitting detection of additional lines (e.g., NII)
- Spectral Resolution can be increased at the price of reducing available field of view.
 R=10,000 spectroscopy should be possible with a 2' diameter FOV.
- Scale change may be possible to optimize detector performance

These options should be available with negligible additional cost.

SAFIRE's Extended Capabilities - II

- Wavelength range could be increased to include certain wavelengths in the 50μm≤λ≤205μm range, permitting detection of additional lines (e.g., OI at 63μm)
- Scale change would be considered to optimize detector performance, provide R~10⁴ spectroscopy
- Narrowband filters would be used for some number of lines over the 50µm-200µm range (e.g., OI, CII, NII lines); only useable in Milky Way or nearby galaxies
- These changes would require configuration changes in the cryogenic system (no mechanisms, separate runs)

This capability should be available with low additional cost.